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Abstract: Most linguistic theories postulate structures with covert information, not directly recoverable
from utterances. Hence, learners have to interpret their data before drawing conclusions. Within the
framework of Optimality Theory (OT), Tesar & Smolensky (1998) proposed Robust Interpretive Parsing
(RIP), suggesting the learners rely on their still imperfect grammars to interpret the learning data. I in-
troduce an alternative, more cautious approach, Joint Robust Interpretive Parsing (JRIP). The learner
entertains a population of several grammars, which join forces to interpret the learning data. A stan-
dard metrical phonology grammar is employed to demonstrates that JRIP performs significantly better
than RIP.
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1. Information hidden from the learner

Linguistic theories usually rely on covert information, hidden from the
observer – from the linguist and from the language learner alike. This
information concerns important features of the theories: brackets of syn-
tactic and metrical trees, co-indexation, thematic roles, and so forth. Does
the sentence John loves Mary, uttered in a mutual love situation, support
SVO or OVS word order? Supposing that our theories adequately mirror
linguistic competence, or at least one day they will, the central role played
by these abstract theoretical constructs poses a challenge to the learner.

In this article, I shall employ metrical foot structure as an example,
while keeping in mind that the problem is far more general. Nearly all
contemporary phonological theories heavily rely on the notion of feet in
their accounts of word stress assignment (Hayes 1995). According to the
standard approach, a foot must contain one stressed, as well as, optionally,
at most one unstressed syllable. A word must contain at least one main
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foot – whence the primary stress – and may contain further feet, each
with a syllable with secondary (or tertiary) stress. Thus, the word banána
with stress on its second syllable is explained by these theories via the foot
structure ba(ná)na or (baná)na or ba(nána). Yet, by which one exactly?
These linguistic structures correspond to the same observable (overt) form.
The problem is faced both by the phonologist subscribing to a theory with
metrical feet, and by the language learning child whose competence the
linguist’s theory supposedly describes in an adequate way. The linguist’s
solution is to resort to (implicit or explicit) postulates of the theory, such
as monosyllabic feet are avoided whenever possible; or a language employs
either iambic feet (with foot-final stress) or trochaic ones (with foot-initial
stress), but never both. Even if these postulates belonged to an innate UG
and were available to the child, the creativity and intuition of the theory
making linguist are still hard to algorithmise as an automatic learning
procedure.

In online, error-driven learning algorithms, the learner entertains a
grammar, which she repeatedly updates after having heard new learning
data. Whenever the input to her learning algorithm is different from what
she would have produced, an “error” occurs, which triggers a change in
the grammar. After the update, the grammar will correctly produce that
form; or the grammar will be more likely to correctly produce that form;
or the grammar will be “closer” (in some sense) to the target grammar
producing that form; or, at least, to a grammar that is equivalent to the
target grammar, producing the same forms.

Imagine that the target grammar, the competence of the teacher, pro-
duces the surface form ba(nána) – including foot structure – whereas the
grammar hypothesised by the learner predicts (bána)na for underlying
form /banana/. The overt form – missing the hidden structure – uttered
by the teacher and heard by the learner is banána. This piece of learning
data is clearly different from the learner’s own overt form bánana, and this
error triggers a grammar update. For instance, the learner realises that re-
placing trochaic feet with iambic ones would do the job. So, she will predict
(baná)na as grammatical surface form, yielding the overt form banána –
the same as the overt form uttered by the teacher. As long as there are no
other forms in the language, the learning process can be seen as successful:
although arriving at a different grammar, the learner will perfectly repro-
duce the primary linguistic data of the teacher. Yet, languages contain
more words, such as hòcuspócus. Upon hearing them, the learner may re-
consider her hypothesised grammar, and get to the conclusion that the tar-
get language does not contain word-initial iambs (predicting (hocús)pocus
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or (hocús)(pocùs)) but word-final trochees. Hence, the correct parses are
(hòcus)(pócus) and ba(nána).

Such a radical reconsideration of the hypothesis can certainly be ex-
pected from a trained linguist. But can it be expected from a baby?
Are there cognitively plausible learning mechanisms encoding this creative
step? Indeed, learning algorithms in various grammatical frameworks1 have
been shown to be stuck in ‘local optima’, situations that are far from the
target, and yet, no single learning step is capable of dislodging the system
from this position.

2. Robust interpretive parsing in Optimality Theory

Here is a typical situation faced by the Robust Interpretive Parsing (RIP)
algorithm proposed by Tesar & Smolensky (1998; 2000) within Optimality
Theory (OT) (Prince & Smolensky 1993). In this example, oversimplified
for the sake of clarity, the grammar includes only the three candidates in
tableau (1) for underlying form /banana/. (Suppose, for instance, that the
rest have already been filtered out by higher ranked constraints.) The three
constraints are NONFINAL, requiring that the last syllable of the word be
not parsed into a foot; ALIGN(Wd,Ft, R), requiring that the right edge of
the word be aligned to the right edge of some foot; and finally TROCHAIC,
which punishes iambic feet.

(1) /banana/ NONFINAL ALIGN(Wd,Ft, R) TROCHAIC
l 1. (bána)na ∗
w 2. (baná)na ∗ ∗
F 3. ba(nána) ∗

Imagine now that the teacher’s grammar is TROCHAIC≫ALIGN(Wd,Ft, R)
≫ NONFINAL. Reading the tableau right-to-left, we obtain this hierarchy
will produce the surface form highlighted by the F symbol, ba(nána). Cor-
respondingly, the teacher will utter the overt form banána. Having heard
that, the learner recovers the underlying form /banana/, and tests her hy-
pothesised grammar, NONFINAL ≫ ALIGN(Wd,Ft, R) ≫ TROCHAIC. As
the tableau shows, she concludes she would have said (bána)na, which cor-
responds to a different overt form, bánana. This error should trigger an

1 Refer to Niyogi (2006) for an overview and possible failures of learning within the
principles-and-parameters framework, and to Tesar & Smolensky (2000) for an intro-
duction to learning in Optimality Theory.
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update of her hypothesised hierarchy. By comparing the loser form she
would produce to the winner form produced by the teacher, she promotes
certain constraints and/or demotes other ones. There is no doubt, the loser
form l is candidate 1. It is unclear to her, however, not having access to
the teacher’s mind, whether the uttered form originates from candidate 2
or from candidate 3. What should she do: which one should she use as the
winner form in updating her hierarchy?

In this specific case (but not necessarily in all cases), the reader, an
expert in Optimality Theory, may quickly realise that candidate 2 is har-
monically bounded (Samek-Lodovici & Prince 1999) by candidate 1. Can-
didate 2 can never be produced, by no hierarchy will it emerge as the
optimal candidate. Thus, the reader will conclude that the teacher’s gram-
mar must have produced candidate 3, and the learner ought to update her
hierarchy by aiming at ba(nána). However, in the case of a realistically
complex grammar, the situation is not that simple, with so few candidates
to be tested for boundedness. For instance, Optimality Theoretic anal-
yses of phenomena with recursive insertion of non-overt structures will
yield an infinite array of interpretations.2 Moreover, a candidate may be
bounded not only by single candidates, but also by combinations of candi-
dates (bounding sets, Samek-Lodovici & Prince 1999), further aggravating
the computational challenge. Finally and most importantly, competing
structures corresponding to the same overt form need not be harmonically
bounded at all (see footnote 3 below).

In traditional Robust Interpretive Parsing (RIP, Tesar & Smolensky
1998), the learner guesses the form uttered by the teacher by recurring to
her own grammar. She knows that the teacher must have uttered either the
surface form (baná)na or ba(nána) as the overt form banána. Relying on
the hierarchy she has been hypothesising (NONFINAL≫ ALIGN(Wd,Ft, R)
≫ TROCHAIC), she compares the candidates corresponding to the observed
overt form. This interpreting parsing differs from standard OT production
in that candidates corresponding to a differently uttered form are left out.
In turn, being more harmonic than candidate 3 for the learner’s hierarchy,
candidate 2 – that is, (baná)na – emerges as winner form w. This is the
candidate supposed by the learner to have been generated by the teacher.
Now the learner can proceed to comparing this winner form to her loser
form, (bána)na, and determine which constraints to promote and/or which
to demote.

2 Jason Riggle’s Contenders algorithm (Riggle 2004; 2009) is able to eliminate all
bounded candidates even from an infinite candidate set, but only if Gen and all
the constraints can be represented as finite-state automata.
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Variants of the OT online (error-driven) learning algorithm use differ-
ent update rules. Yet, they share the general idea that constraints prefer-
ring the loser to the winner must be demoted, while constraints preferring
the winner to the loser may potentially be promoted (Tesar & Smolensky
1998; Boersma & Hayes 2001; Pater 2008; Boersma 2009; Magri 2012).
Looking at tableau (1), however, we see we do not have winner-preferring
constraints, and the single loser-preferring constraint, TROCHAIC, is al-
ready at the bottom of the learner’s hierarchy. The learner has thus reached
a deadlock, unable to update her grammar.3

Observe, however, that the learner needs not identify a single candi-
date as the “winner” (Biró 2013). What is only made use of is the win-
ner’s profile. By comparing the loser’s profile to it, the learner identifies
the loser-preferring constraints to demote and the winner-preferring con-
straints to (potentially) promote. Consequently, I suggest replacing the
winner’s profile with a (weighted) mean violation profile of the potentially
winner candidates. In our example, averaging the number of violations in-
curred by candidates 2 and 3 yields:

3 Some reviewers have not been convinced by the toy example provided, as it was the
harmonically bounded candidate that caused the deadlock. But let us also include
constraint IAMBIC:

/banana/ NONFINAL ALIGN TROCHAIC IAMBIC
(Wd,Ft,R)

l 1. (bána)na ∗ ∗
w 2. (baná)na ∗ ∗
F 3. ba(nána) ∗ ∗

Repeat now the above train of thought, but with IAMBIC ranked below TROCHAIC
in both the teacher’s and the learner’s hierarchy. The teacher would again produce
ba(nána), and the learner would again take (bána)na as the loser form (the candidate
she would have produced), and (baná)na as the winner form (the candidate she
believes she has heard). In turn, beside the loser preferring constraint TROCHAIC,
the learner will also identify a lower ranked winner preferring constraint, IAMBIC. By
reversing the two, the learner converges on an iambic grammar producing (baná)na.
While this grammar is substantially different from the teacher’s, there is no way
of distinguishing between the two on the surface, as long as /banana/ is the only
morpheme in the language. But as soon as we also include words with a different
number of syllables, the learner may collect evidence for the target language to be
trochaic, and reverses the two constraints again. Thus, she may enter an infinite
loop, comparable to the more complex and more realistic cases discussed by Tesar &
Smolensky (2000), which need not be repeated here.
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(2) /banana/ NONFINAL ALIGN(Wd,Ft, R) TROCHAIC
l 1. (bána)na ∗

2. (baná)na ∗ ∗
F 3. ba(nána) ∗
w (2. + 3.)/2 0.5 0.5 0.5

The last row of tableau (2) now contains the mean violation profile, with
the potential winner candidates having equal weights. This last row is now
used as the “winner” w, and compared to the row of the loser candidate
l. A typical example of OT, this tableau contains stars in its cells, cor-
responding to integers as violation levels. The mean for each constraint
is in general a rational number, which may be less common in OT, but
nevertheless it remains possible to decide if a constraint prefers the loser
or the “winner”.

The comparison suggests promoting the winner preferring constraint
ALIGN(Wd,Ft, R), and demoting the loser preferring NONFINAL and TRO-
CHAIC. What emerges is the hierarchy ALIGN(Wd,Ft, R) ≫ NONFINAL ≫
TROCHAIC. Although this ranking differs from the teachers’ TROCHAIC ≫
ALIGN(Wd,Ft, R)≫ NONFINAL, the two grammars are equivalent, at least
as far as this single underlying form is concerned: both produce surface
form ba(nána). The deadlock has been avoided.

However, in a realistic example, the number of potential winner can-
didates might be very large, if not infinite. Therefore, simply computing
the average of the candidates’ profiles may be unrealistic, but also not
the most efficient solution. After all, as the learning process advances, the
learner may rightfully suppose that her hierarchy is getting closer to the
target. So, it might make sense to exploit that hierarchy, even if more cau-
tiously than the way suggested for traditional RIP in Tesar & Smolensky
(1998).

The next section argues for an alternative to RIP, to be called Joint
Robust Interpretive Parsing (JRIP). The loser’s violation profile is com-
pared to an averaged winner violation profile, and this average is taken over
a sample of winners produced by a population of hypothesised grammars.
A potential winner gets a higher weight when more hierarchies in the popu-
lation vote for it. This approach has been inspired by genetic algorithms, a
heuristic optimisation technique (Reeves 1995).4 Maintaining a population

4 I am indebted to Jan-Willem van Leussen, who raised the idea of using genetic
algorithms during a discussion. Note also that GRIP, introduced by Biró 2013, is
motivated by another heuristic optimisation technique, simulated annealing (cf. e.g.,
Reeves 1995; Biró 2006).
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of hypothesised grammars has been successful in principles-and-parameters
learning (Yang 2002). Genetic algorithms are not new to Optimality The-
ory, either (Turkel 1994; Pulleyblank & Turkel 2000), even if they have
not been employed to target the covert structure problem. Note, however,
that what follows is not a genetic algorithm in the strict sense.

3. JRIP: parsing together

Traditional RIP misleads the learner by suggesting that she can rely on her
hypothesised grammar for the interpretation of the learning data. Yet, we
know that her grammar is not correct, since an error has just been detected.
An unlucky hypothesis will fatally distort the learner’s interpretation of
the learning input. The heuristics behind the alternative being proposed
is that collective wisdom may help avoid this pitfall. The experiments
presented in the next section demonstrate, however, that group influence
can be both beneficial and detrimental.

Given an OT grammar and an error-driven learning algorithm (includ-
ing an update rule), let p be the probability that the learning algorithm
is successful: that it converges either to the target hierarchy, or at least,
to a grammar that is equivalent to the target (in the sense that no error
will ever prove that a different hierarchy has been arrived at). 1− p is the
probability on non-convergence (e.g., infinite loop) and convergence to a
wrong grammar (deadlock). Depending on our theoretical assumptions, the
learner may start either with a random hierarchy, or with a well-defined
initial state (for instance, ranking markedness constraints above faithful-
ness constraints). Similarly, the nature of the target grammar and the
distribution of the learning data may vary across experiments.

Take a learner entertaining a population of r hierarchies (h1, h2,…,
hr) and running independent learning processes in parallel. The learner
can be said to have acquired the target language if (1) at least one of the
hierarchies reaches the target, or (2) each of the hierarchies reaches the
target. If we postulate different – such as random – initial states for the
hierarchies, then each learning datum may be used to update every hierar-
chy.5 Criterion (1) is simply “cheating”, the multiplication of one’s chances
to succeed by allowing more attempts, whereas criterion (2) renders the

5 If, however, the initial state is the same for each hi, then we could feed them with
different random samples, one piece of learning data updating a single hierarchy.
Currently we shall not pursue this option. Lacking any faithfulness constraint, we
will not exploit the initial faithfulness over markedness assumption, either.
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task unnecessarily difficult. If the r learning processes are indeed indepen-
dent, then the probability of success in case (1) will be 1− (1− p)r, since
each hierarchy must fail for the entire project to fail; whereas the same
likelihood will be pr in case (2). Given a typical value of p, in the range of
50% to 90% (Tesar & Smolensky 2000; Boersma & Pater 2008; Biró 2013;
see also the next section), a larger r makes the success in case (1) very
probable, and in case (2) extremely improbable.

In the next section, however, we shall see that the r learning processes
are not independent. Although the hierarchies are initialised randomly,
their success also depend on the common teacher feeding them with the
same data. Given various targets, the learning success of hierarchy hi cor-
relates with the learning success of hj . This conclusion will follow from
observing a success rate under condition (1) lower than 1 − (1 − p)r, and
under condition (2) higher than pr.

I now propose a third way of combining the r processes, the JRIP
algorithm, which stands for Joint Robust Interpretive Parsing. In JRIP,
each of the r hierarchies produces its own loser li and updates its ranking hi
independently from the rest. Yet, they join forces to determine the winner
profile. Thereby they may help out those who would make a bad decision
by themselves. Each hierarchy makes a guess for the winner candidate
wi, and the winner violation profile w will be the mean of the violation
profiles of these guesses. Subsequently, each hierarchy compares its own
loser li to the mean winner profile w to determine which constraints to
demote and/or which to promote.

The following pseudo-code summarises the JRIP algorithm:

– For each i = 1. . .r, initialise hierarchy hi randomly.

– For each overt form o (piece of learning data) produced by the
teacher,

1. Recover underlying form u from o.
2. For each hierarchy hi (i = 1. . .r), and given u, produce loser

form li.
3. Determine the set W of potential winner forms, namely those

candidates whose corresponding overt form coincides with o.
4. For each hierarchy hi (i = 1. . .r), find winner form wi in W

(most harmonic element of W with respect to hi).
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5. Determine mean violation profile w:

C(w) :=
1

r

r∑
i=1

C(wi)

where C(wi) is the violation of constraint C by candidate wi.
6. For each hierarchy hi (i = 1. . .r),

– C is a winner-preferring constraint if C(li)− C(w) > β.
– C is a loser-preferring constraint if C(w)− C(li) > λ.

7. For each hierarchy hi (i = 1. . .r), if li is not in W , then demote
the loser preferring constraints and/or promote the winner pre-
ferring constraints, depending on the update rule of the learning
algorithm.

– Run until every hierarchy hi (i = 1. . .r) reproduces all learning data.

In JRIP, the failure of a learning process going astray should be prevented
by community wisdom. Being initiated randomly, some hierarchies in the
population will be closer to the target, and so forestall the rest from draw-
ing the wrong conclusions. In other cases, as we shall see, even the few
lucky hierarchies “decline after many to wrest judgement”. Following the
multitude is a surprisingly strong drive: most successful experiments ter-
minated with all hierarchies generating the same surface forms, not only
the same overt forms.

The role of the β and λ parameters, borrowed from Biró 2013, is to
introduce a margin between winner-preferring and loser-preferring con-
straints, and thereby to prevent inadvertent mistakes. Traditionally, they
are both equal to zero. A constraint is winner-preferring with respect to
learner’s hierarchy hi, if C(li)−C(w) > 0; that is, if the loser for hierarchy
hi incurs more violations than the average of the violations incurred by
candidates w1, w2,…, wr. Similarly, a loser-preferring constraint tradition-
ally satisfies the inequality C(w) − C(li) > 0. By introducing positive
β and λ parameters, the procedure becomes more conservative. Less con-
straints are promoted or demoted, and more are left intact. To promote
or demote a constraint, the case must be made stronger: the loser must
violate it very differently from the average of the winners.

Here is a plausible scenario. Some update rules focus on demoting
the highest ranked loser preferring constraint, and so they can be led
astray by mistakenly categorising a highly ranked constraint as loser pre-
ferring. But this is exactly what happens in situations similar to the one
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depicted in the tableaux of section 2. A hierarchy hi may pick a harmoni-
cally bounded candidate as the winner, violating a constraint satisfied by
the “real winner” (the surface form produced by the teacher). After av-
eraging, the mean winner profile will therefore incur more violations for
this constraint, possibly turning it into “falsely loser preferring” – exactly
as it happened to TROCHAIC in tableau (2). Imagine now that another
hierarchy, hj , has correctly ranked it high. (Remember that TROCHAIC
dominated the teacher’s grammar in section 2.) Therefore, update rules
demoting the highest ranked loser preferring constraint will erroneously
demote it in hj . Yet, a sufficiently large λ will refrain the learner from
categorising this constraint as loser preferring. Demoting a lower ranked
constraint instead will usually have less dramatic consequences, and so it
is a safer move.

The conservative margin introduced by positive β and λ parameters
has significantly increased the hierarchies’ tendency to “choose the good”
in the experiments which we now turn to.

4. Learning metrical stress

4.1. The linguistic model

I ran a series of experiments in order to assess the learnability of con-
temporary theories of stress based on the abstract notion of metrical feet.
Similarly to Tesar & Smolensky 2000 and the ensuing literature (Boersma
2003; Boersma & Pater 2008; Biró 2013), the Generator function of the
OT grammar added a foot structure – including monosyllabic and bisyl-
labic, main and non-main feet – to the underlying series of light and heavy
syllables. Their twelve constraints, widespread in metrical phonology, were
also adopted, and the demurring voices against some of them (Eisner 1997;
McCarthy 2003; Biró 2003) were ignored:

• FOOTBINARITY: Each foot must be either bimoraic or bisyllabic.
Thus, assign one violation mark per foot composed of a single light
syllable.

• WEIGHT-TO-STRESS PRINCIPLE (WSP): Each heavy syllable must
be stressed. Thus, assign one violation mark per every heavy syllable
that is not stressed.

• PARSESYLLABLE: Each syllable must be footed. Thus, assign one
violation mark per syllable unparsed into some foot.
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• MAINFOOTRIGHT: Align the main foot with the word, right edge.
Assign one violation mark per each syllable intervening between the
right edge of the main foot and the right edge of the word.

• MAINFOOTLEFT: Align the main foot with the word, left edge. Assign
one violation mark per each syllable intervening between the left edge
of the word and the left edge of the main foot.

• ALLFEETRIGHT: Align each foot with a word, right edge. For each
foot, assign one violation mark per each syllable intervening between
the right edge of that foot and the right edge of the word.

• ALLFEETLEFT: Align each foot with a word, left edge. For each foot,
assign one violation mark per each syllable intervening between the
left edge of the word and the left edge of that foot.

• WORDFOOTRIGHT: Align the word with some foot, right edge. As-
sign one violation mark to the candidate iff the right edge of the
word does not coincide with the right edge of some foot.

• WORDFOOTLEFT: Align the word with some foot, left edge. Assign
one violation mark to the candidate iff the left edge of the word does
not coincide with the left edge of some foot.

• IAMBIC: Align each foot with its head syllable, right edge. Assign one
violation mark per foot whose last (single or second) syllable is not
stressed (that is, per binary trochees).

• FOOTNONFINAL: Each head syllable must not be final in its foot.
Assign one violation mark per foot whose last (single or second)
syllable is stressed (that is, per monosyllabic feet and binary iambs).

• NONFINAL: Do not foot the final syllable of the word. Thus, assign
one violation mark to the candidate iff the last syllable of the word
is footed.

The model was implemented in the OTKit software package (Biró 2010).
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4.2. Experimental setup

At the beginning of an experiment, the teacher’s grammar and the r hi-
erarchies entertained by the learner were randomly initialised: each of the
twelve constraints received a random floating point rank between 0 and 50.6
The following update rules were compared: Paul Boersma’s GLA, demoting
loser preferring constraints and promoting winner preferring constraints by
the same (and unreduced) plasticity of 1 (Boersma & Hayes 2001); Giorgio
Magri’s earliest variant thereof, demoting the highest ranked loser prefer-
ring constraint by 1, and promoting all nw winner preferring constraints
by 1/nw (Magri 2011; 2012); alldem, demoting all loser preferring con-
straints by 1; and topdem or Minimal GLA, demoting the highest ranked
loser preferring constraint by 1 (Boersma 1998).7

The first two are promotion-demotion algorithms, while the last two
are demotion-only algorithms. GLA and alldem are rank-insensitive, while
Magri and topdem refer to the loser preferring constraint ranked highest in
the learner’s hierarchy hi. According to the experiments to be presented, it
is mostly rank-sensitiveness that influences the behaviour of the learning
algorithm. We shall see that the alldem update rule yields results similar
to GLA, and topdem follows Magri’s update rule.

Feeding the learner, the teacher cyclically generated overt forms from a
pool of four underlying forms: a sequence of four heavy syllables, a sequence
of five light syllables, and two sequences of mixed syllables. The exact order
of presentation was: /ab.ra.ka.dab.ra/, /a.bra.ka.da.bra/, /ho.cus.po.cus/
and /hoc.cus.poc.cus/. The learner’s hierarchies were expected to repro-
duce all of them. The learning was considered unsuccessful if the learner
could not learn the target language after 500 cycles of presentation.

Most of the experiments did not require more than 100 cycles, and
99% of the learning terminated within 200 or 250 cycles, depending on
the parameters. Hence, the reported success rates hardly underestimate
those that could be obtained with a more severe – but computationally
much more demanding – stopping condition (more cycles, or testing for
various forms of failure: real divergence, infinite loops, etc.). Auxiliary
experiments employed a 5000-cycle-limit, improving the success rate by less
than 0.1%. Using one of the parameter combinations yielding the lowest

6 A systematic study of the OT factorial typology predicted by the twelve constraints,
as suggested by a reviewer, has been deferred to future work.

7 Please note that Boersma’s GLA, unlike the other algorithms, was devised to learn
Stochastic OT, and is the only algorithm of the four that can learn variation at all
(Boersma, p.c.). Variation in language is, however, not covered in this paper.
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success rates (r = 10, β = λ = 0.0), not more than 4 out of 10,000
experiments terminated after 500 and before 5000 learning cycles – and
most of them within 700 cycles – for any update rule: this is the number of
learning successes that would have been missed, if learning were stopped
after 500 cycles. This increase of less than 0.1% should be compared to the
error margins otherwise falling in the magnitude of 1%.

Theoretically, learning can fail not only due to the hidden structure
problem, but also as a result of the non-convergence of some learning al-
gorithms (e.g., Pater 2008). Therefore, we also have to test the cases when
the teacher provides the full surface forms, including foot brackets, for
the learner. Three of the four learning approaches always converged in
tens of thousands of experiments, whereas GLA converged in 98.8% of the
cases, setting an upper limit to the expected success in the covert infor-
mation case. (Given 16,000 experiments, the 95% confidence interval was
98.78%±0.17%.) Increasing the number of data presentation cycles from
500 to 5000 did not significantly improve the learning rate. In fact, even
then all successful learning experiments (9879 out of 10,000) terminated
within less than 200 cycles, suggesting that these 1.2% are genuine failures,
not due to stopping the learning process too early.8

4.3. Results

Figure 1 presents the success rates of different update rules, as a function of
the number of hierarchies r. The r = 1 case corresponds to traditional RIP,
with a probability p ≈ 0.77 that the randomly initialised learner acquires
the language of the randomly initialised teacher. The JRIP algorithm with
a few hierarchies markedly improves the learning rate, even though the

8 This success rate for GLA is lower by 1% than the corresponding value in Biró 2013 for
learning the same four forms. The difference must be due to the fact that the data
presentation order was randomised in Biró 2013. Incidentally, the same difference,
about 1%, reappears in the main experiments: GLA with RIP was successful in less
than 77% of the cases with cyclic presentation order (section 4.3), and in more than
78% of the cases with random order (Biró 2013). Interestingly, Boersma (2003, 440)
reports an opposite observation: when he repeated the experiments of Tesar and
Smolensky (124 target languages with 62 overt forms each), cyclic presentation order
performed better than randomised order.

Note, moreover, that the success rate significantly decreased as more hierarchies
were learning in parallel. When ten hierarchies were presented with full-information
surface forms, the success rate diminished to 95.54%±0.32%. This score is still much
higher than 0.987810 = 0.8845, the expected success rate if the ten learning processes
were independent.
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success diminishes with a larger r. Interestingly, the curves for the rank-
sensitive update rules (Magri and topdem) get much closer to the 100%
success rate than the rank-insensitive rules (GLA and alldem). Although,
statistically speaking, the rise is significant thanks to the large number
of experiments, the effect size is small: the later two algorithms cannot
improve their scores by more than a few percents.

Figure 1 also contains the success rates for independently learning
hierarchies, under the conditions (1) and (2) discussed above. If all hier-
archies must succeed, then the learning rate quickly diminishes, but much
slower than pr. Similarly, if the success of a single hierarchy suffices, then
the rate grows fast, but not as fast as 1 − (1 − p)r. As mentioned earlier,
this observation suggests that the learning success also depends on the
target. Certain languages (sets of learning data) are hard to learn, while
others are easy; therefore the r learning processes, which are run in parallel
and independently from each other, tend to succeed or fail on the same
datasets.

At the same time, as an anonymous reviewer remarks, the fact that
these two graphs do not coincide affirms that the learning dynamics of
standard RIP is sensitive to initialisation. Otherwise, parallel learning pro-
cesses fed on the same learning data would fail or succeed in tandem. The
reviewer then notes how close the at-least-one-must-succeed condition (△)
falls on each graph to the 100% success rate for r = 5. In other words, in a
random sample of hierarchies of size r = 5, there will almost always be at
least one ranking from the – hence, apparently large – region of successful
initial hierarchies.

Figures 2, 3 and 4 illustrate the role of the parameters β and λ. Increas-
ing the value of at least one parameter helps us avoid the performance drop
observed for larger r values. Figures 2 and 3 contain the same data, but
organised in different ways. The former demonstrates that given a learning
method and a set value of β, the middle ranges of λ yield the best results:
λ = 0.4 for Boersma’s GLA and λ = 0.2 for Magri’s alternative version
of it. The later figure testifies to the weaker influence of the choice of the
β parameter. Magri’s update rule, which promotes the winner preferring
constraints with small steps, only marginally benefits from a positive β.
Thanks to the 6000 experiments per data point, the statistical significance
can be often demonstrated, and still, the effect size is very small.

Figure 4 displays the influence of λ on learning with the demotion-
only update rules. Their behaviours are comparable to those of the cor-
responding promotion-demotion algorithms. As parameter β is employed
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Figure 1: Success rates as a function of the number of hierarchies (r), for four
update rules, under various success conditions: all hierarchies must suc-
ceed(∇), at least one must succeed (△), as well as JRIP (⊕; β = λ = 0).
The upper and lower solid curves are 1− (1− p)r and pr respectively.
Each data point corresponds to N = 5000 experiments. The signifi-
cance of the difference of two data points is reflected by the style of
the connecting line: solid for p < 0.001, dashed for 0.001 ≤ p < 0.01,
dot-dashed for 0.01 ≤ p < 0.05, and dashed for p ≥ 0.05.

for the selection of the winner-preferring constraints to be promoted, de-
motion-only algorithms are unaffected by the choice of β.

These two parameters influence the success rates in a complex, non-
trivial way, which must be clarified by future research. A major mystery
is the recurrent valley observable for r = 5 and β = 0.6. Nevertheless, we
can conclude that a careful choice of the parameters largely improves the
chance of success.
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Figure 2: Success rate of JRIP as a function of the number of hierarchies (r), for
the promotion-demotion update rules, and different values of parame-
ters λ (per curve) and β (per panel). Each data point corresponds to
N = 6000 experiments.
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Figure 3: Success rate of JRIP as a function of the number of hierarchies (r), for
the promotion-demotion update rules, and different values of parame-
ters λ (per panel) and β (per curve). Each data point corresponds to
N = 6000 experiments.
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Figure 4: Success rate of JRIP as a function of the number of hierarchies (r), for
the demotion-only update rules, and different values of the parameter
λ (per curve). Parameter β does not play a role in these update rules.
Each data point corresponds to N = 6000 experiments.

5. Concluding discussion

Using traditional Robust Interpretive Parsing (RIP, Tesar & Smolensky
2000), the probability of learning a random stress pattern is – given our
OT grammar, a learner with a random initial hierarchy and the cyclic
order of presenting the four words in the lexicon – p = 76.54%± 0.79% in
the case of Paul Boersma’s GLA (Boersma 1998), and p = 77.22%±0.78%
in the case of Giorgio Magri’s algorithm (Magri 2011) (95% confidence
intervals, based on 11000 experiments each). Learning metrical stress is
a difficult task because the theory is based on unobservable feet, which
the learners must surmise. A fifth of the learners fail, mainly because they
mistakenly rely on their own hypotheses in interpreting the learning data.
Joint Robust Interpretive Parsing (JRIP) improves on the success rate
by calling for cooperation in a population of r hierarchies. The common
wisdom of ten hierarchies, together with some conservative caution, helps
us reach success rates as high as 92% for GLA (β = 0.0, λ = 0.4, r = 10),
and 96% for Magri’s update rule (β = 0.4, λ = 0.2, r = 10).

The problem of learning from data that hide crucial structural infor-
mation from the learner has been around since the first discussions on the
learnability of Optimality Theory. While the RIP algorithm of Tesar and
Smolensky was long taken as the standard, a number of alternatives have
recently been advanced. Jarosz (2013) introduced Resampling RIP and Ex-
pected Interpretive Parsing, while Biró (2013) advanced Generalised RIP.
Their performance – the improvement relative to RIP – is comparable to
the one of JRIP. Future research might wish to estimate which of RIP,
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RRIP, EIP, GRIP and JRIP (and using what parameter combination) is
most successful by employing a standard dataset. I have declined to do so
for a principled reason: I do not believe the merit or weakness of an al-
gorithm depends on its performance on a specific arbitrary toy grammar.
In practice, the specific task at hand will determine the best approach.
I also concur with my reviewers: mathematical, analytical work on the al-
gorithms in the future might shed more light on their virtue and vice. If,
however, our goal is to understand language learning by the human mind,
we should ponder other criteria, such as learning curves, error patterns, as
well as the cognitive plausibility of the computational mechanisms. Prob-
abilistic resampling and simulated annealing could be argued to be per-
formed by the neural network in the brain, even if technical details of the
proposed algorithms are quite abstract and mathematical. At the same
time, JRIP’s parallel grammars might show some affinity with parallel
grammars in bilingual language development. Note, moreover, that RRIP
and EIP crucially address the hidden information problem in stochastic
OT and HG (Boersma 1997; Boersma & Hayes 2001; Boersma & Pater
2008) only, unlike GRIP and JRIP, which also work in the non-stochastic
context.

One may ask then what the advantage is of using JRIP. Remem-
ber that the same number of hierarchies offered a much higher success
rate when the hierarchies learned independently of each other until one
of them was successful. Indeed, this kind of independent learning may be
efficient from an engineer’s perspective. Yet, it is psychologically implau-
sible: while the number of metrical stress patterns in a language might
be quite small, children cannot test their hypothetical grammars on the
full vocabulary – let alone, scaling the grammar up, on the complex sys-
tem of an entire language. Instead, they run their learning mechanism for
some years, and after a certain “critical age” they stop learning. Imagine
a child entertaining several, but independently developing grammars – a
conjecture that would explain the large variability in child language (Yang
2002). Our simulations suggest that most probably some of the hierarchies
will find the target language, but most probably not all of them. Thus,
the child reaches the “critical age” with incompatible grammars. It is hard
to imagine that she would then test these grammars for the entire target
language – in the way our computer simulations did with a very restricted
vocabulary – to find out which (if any) of the hierarchies is correct. Thus,
such a model would predict that the adults display a variation of forms
comparable to that of the children, alternating which grammar to use in
production. Consequently, we need a learning method that makes it likely
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that all hierarchies acquire the target language. Independent learning with
this stronger requirement proved to be much less successful than the joint
learning algorithm JRIP.

Mapping the exact interplay between constraints, candidates, initial
and target hierarchies, update rules and JRIP parameters is deferred to
future work. A better understanding of the algorithms’ behaviour will cer-
tainly contribute to a better understanding of OT learning algorithms in
general. For instance, the stronger dependence of JRIP with Magri’s up-
date rule on λ than on β may be worth a longer discussion. It has also
been surprising to see that rank-sensitiveness – differentiating between
GLA and alldem, on the one hand, and Magri and topdem, on the other –
is a major factor; whereas the distinction between promotion-demotion al-
gorithms (GLA and Magri) versus demotion-only algorithms (alldem and
topdem) only influences the importance of the choice of the β parameter.

The strong dependence of JRIP on its parameters (r, β and λ), hardly
understood thus far, may be brought up as another point of criticism
against JRIP. Some parameter combinations do it much better than tra-
ditional RIP, but others do much worse. Yet, it might be speculated that
biological evolution could have optimised the parameter setting, and so
our mind employs a (locally) optimal combination of the parameters.

Beyond the question whether JRIP is cognitively plausible or useful
for language technology, the results presented here have more general con-
sequences. Traditionally, generative linguistics accounts for non-existing
types in language typology by postulating parameters or constraints such
that no parameter setting or constraint hierarchy would predict this type.
A language does not exist because the mind cannot encode it. When
Tesar & Smolensky (2000) demonstrated that some metrical phonology
grammars could not be learned due to the hidden structure problem, non-
learnability was identified as a second reason for the lack of certain types
(Boersma 2003). Two further reasons are the evolutionary instability of a
type (Jäger 2003) and the too heavy computational load associated with
it (Biró 2006, 215). Our results now remind us that the learnability of a
type crucially depends on the learning algorithm. Hence, explaining the
lack of a type by referring to its unlearnability is flawed unless we have
independent arguments for the human mind using this learning algorithm.
Or, reversing the train of thought: a learning algorithm can be argued for,
and another learning algorithm can be argued against by comparing their
learnability predictions to attested language types – provided, of course,
that we strongly believe in the adequacy of the grammar architecture and
its building blocks (principles, parameters, constraints, candidate sets, etc.)
(cf. Boersma 2003, 443).
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The experiments in this paper have focused on metrical stress within
the framework of Optimality Theory. Some linguistic details of the gram-
mar may be contested, but a different “dialect” of contemporary metrical
phonology is not expected to display a very different computational be-
haviour. Moreover, as mentioned in the introduction, metrical stress is just
one example for a far more general problem: crucial information is often
covert in the learning data. I hope that JRIP offers a better solution to
this universal challenge in linguistics, and that the results give ground for
optimism and improvement regarding other linguistic phenomena (such as
phrase brackets in syntax and semantic relations), as well. Finally, the so-
lution proposed for OT may also inspire proponents of further theoretical
frameworks struggling with similar learnability problems.
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